3.1.91 \(\int \frac {x^2 (a+b \sec ^{-1}(c x))}{d+e x^2} \, dx\) [91]

3.1.91.1 Optimal result
3.1.91.2 Mathematica [A] (warning: unable to verify)
3.1.91.3 Rubi [A] (verified)
3.1.91.4 Maple [C] (warning: unable to verify)
3.1.91.5 Fricas [F]
3.1.91.6 Sympy [F]
3.1.91.7 Maxima [F(-2)]
3.1.91.8 Giac [F(-2)]
3.1.91.9 Mupad [F(-1)]

3.1.91.1 Optimal result

Integrand size = 21, antiderivative size = 546 \[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx=\frac {x \left (a+b \sec ^{-1}(c x)\right )}{e}-\frac {b \text {arctanh}\left (\sqrt {1-\frac {1}{c^2 x^2}}\right )}{c e}+\frac {\sqrt {-d} \left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}-\frac {\sqrt {-d} \left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}+\frac {\sqrt {-d} \left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}-\frac {\sqrt {-d} \left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}+\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}-\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}+\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}-\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^{3/2}} \]

output
x*(a+b*arcsec(c*x))/e-b*arctanh((1-1/c^2/x^2)^(1/2))/c/e+1/2*(a+b*arcsec(c 
*x))*ln(1-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1 
/2)))*(-d)^(1/2)/e^(3/2)-1/2*(a+b*arcsec(c*x))*ln(1+c*(1/c/x+I*(1-1/c^2/x^ 
2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))*(-d)^(1/2)/e^(3/2)+1/2*(a+ 
b*arcsec(c*x))*ln(1-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c 
^2*d+e)^(1/2)))*(-d)^(1/2)/e^(3/2)-1/2*(a+b*arcsec(c*x))*ln(1+c*(1/c/x+I*( 
1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))*(-d)^(1/2)/e^(3/ 
2)+1/2*I*b*polylog(2,-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)- 
(c^2*d+e)^(1/2)))*(-d)^(1/2)/e^(3/2)-1/2*I*b*polylog(2,c*(1/c/x+I*(1-1/c^2 
/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))*(-d)^(1/2)/e^(3/2)+1/2* 
I*b*polylog(2,-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+ 
e)^(1/2)))*(-d)^(1/2)/e^(3/2)-1/2*I*b*polylog(2,c*(1/c/x+I*(1-1/c^2/x^2)^( 
1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))*(-d)^(1/2)/e^(3/2)
 
3.1.91.2 Mathematica [A] (warning: unable to verify)

Time = 1.88 (sec) , antiderivative size = 1023, normalized size of antiderivative = 1.87 \[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx=\frac {a x}{e}-\frac {a \sqrt {d} \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{e^{3/2}}+b \left (\frac {c x \sec ^{-1}(c x)+\log \left (\cos \left (\frac {1}{2} \sec ^{-1}(c x)\right )-\sin \left (\frac {1}{2} \sec ^{-1}(c x)\right )\right )-\log \left (\cos \left (\frac {1}{2} \sec ^{-1}(c x)\right )+\sin \left (\frac {1}{2} \sec ^{-1}(c x)\right )\right )}{c e}-\frac {\sqrt {d} \left (8 \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \arctan \left (\frac {\left (i c \sqrt {d}+\sqrt {e}\right ) \tan \left (\frac {1}{2} \sec ^{-1}(c x)\right )}{\sqrt {c^2 d+e}}\right )-2 i \sec ^{-1}(c x) \log \left (1+\frac {i \left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-4 i \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-2 i \sec ^{-1}(c x) \log \left (1+\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+4 i \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+2 i \sec ^{-1}(c x) \log \left (1+e^{2 i \sec ^{-1}(c x)}\right )-2 \operatorname {PolyLog}\left (2,\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-2 \operatorname {PolyLog}\left (2,-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+\operatorname {PolyLog}\left (2,-e^{2 i \sec ^{-1}(c x)}\right )\right )}{4 e^{3/2}}+\frac {\sqrt {d} \left (8 \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \arctan \left (\frac {\left (-i c \sqrt {d}+\sqrt {e}\right ) \tan \left (\frac {1}{2} \sec ^{-1}(c x)\right )}{\sqrt {c^2 d+e}}\right )-2 i \sec ^{-1}(c x) \log \left (1+\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-4 i \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-2 i \sec ^{-1}(c x) \log \left (1-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+4 i \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+2 i \sec ^{-1}(c x) \log \left (1+e^{2 i \sec ^{-1}(c x)}\right )-2 \operatorname {PolyLog}\left (2,-\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-2 \operatorname {PolyLog}\left (2,\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+\operatorname {PolyLog}\left (2,-e^{2 i \sec ^{-1}(c x)}\right )\right )}{4 e^{3/2}}\right ) \]

input
Integrate[(x^2*(a + b*ArcSec[c*x]))/(d + e*x^2),x]
 
output
(a*x)/e - (a*Sqrt[d]*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/e^(3/2) + b*((c*x*ArcSec 
[c*x] + Log[Cos[ArcSec[c*x]/2] - Sin[ArcSec[c*x]/2]] - Log[Cos[ArcSec[c*x] 
/2] + Sin[ArcSec[c*x]/2]])/(c*e) - (Sqrt[d]*(8*ArcSin[Sqrt[1 + (I*Sqrt[e]) 
/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[((I*c*Sqrt[d] + Sqrt[e])*Tan[ArcSec[c*x]/2]) 
/Sqrt[c^2*d + e]] - (2*I)*ArcSec[c*x]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + e 
])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] - (4*I)*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c* 
Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + e])*E^(I*ArcSec[c*x] 
))/(c*Sqrt[d])] - (2*I)*ArcSec[c*x]*Log[1 + (I*(Sqrt[e] + Sqrt[c^2*d + e]) 
*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + (4*I)*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sq 
rt[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x])) 
/(c*Sqrt[d])] + (2*I)*ArcSec[c*x]*Log[1 + E^((2*I)*ArcSec[c*x])] - 2*PolyL 
og[2, (I*(-Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] - 2* 
PolyLog[2, ((-I)*(Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d] 
)] + PolyLog[2, -E^((2*I)*ArcSec[c*x])]))/(4*e^(3/2)) + (Sqrt[d]*(8*ArcSin 
[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[(((-I)*c*Sqrt[d] + Sqrt 
[e])*Tan[ArcSec[c*x]/2])/Sqrt[c^2*d + e]] - (2*I)*ArcSec[c*x]*Log[1 + (I*( 
-Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] - (4*I)*ArcSin 
[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(-Sqrt[e] + Sqrt[c^ 
2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] - (2*I)*ArcSec[c*x]*Log[1 - (I*( 
Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + (4*I)*ArcS...
 
3.1.91.3 Rubi [A] (verified)

Time = 1.60 (sec) , antiderivative size = 598, normalized size of antiderivative = 1.10, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {5763, 5233, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx\)

\(\Big \downarrow \) 5763

\(\displaystyle -\int \frac {x^2 \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{\frac {d}{x^2}+e}d\frac {1}{x}\)

\(\Big \downarrow \) 5233

\(\displaystyle -\int \left (\frac {x^2 \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{e}-\frac {d \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{e \left (\frac {d}{x^2}+e\right )}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {-d} \left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}-\frac {\sqrt {-d} \left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}+\frac {\sqrt {-d} \left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 e^{3/2}}-\frac {\sqrt {-d} \left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 e^{3/2}}+\frac {x \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{e}+\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e^{3/2}}-\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e^{3/2}}+\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e^{3/2}}-\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e^{3/2}}-\frac {b \text {arctanh}\left (\sqrt {1-\frac {1}{c^2 x^2}}\right )}{c e}\)

input
Int[(x^2*(a + b*ArcSec[c*x]))/(d + e*x^2),x]
 
output
(x*(a + b*ArcCos[1/(c*x)]))/e - (b*ArcTanh[Sqrt[1 - 1/(c^2*x^2)]])/(c*e) + 
 (Sqrt[-d]*(a + b*ArcCos[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x) 
]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(2*e^(3/2)) - (Sqrt[-d]*(a + b*ArcCos[1/ 
(c*x)])*Log[1 + (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + 
 e])])/(2*e^(3/2)) + (Sqrt[-d]*(a + b*ArcCos[1/(c*x)])*Log[1 - (c*Sqrt[-d] 
*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*e^(3/2)) - (Sqrt[ 
-d]*(a + b*ArcCos[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sq 
rt[e] + Sqrt[c^2*d + e])])/(2*e^(3/2)) + ((I/2)*b*Sqrt[-d]*PolyLog[2, -((c 
*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e]))])/e^(3/2) - 
((I/2)*b*Sqrt[-d]*PolyLog[2, (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - 
 Sqrt[c^2*d + e])])/e^(3/2) + ((I/2)*b*Sqrt[-d]*PolyLog[2, -((c*Sqrt[-d]*E 
^(I*ArcCos[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e]))])/e^(3/2) - ((I/2)*b*Sq 
rt[-d]*PolyLog[2, (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d 
 + e])])/e^(3/2)
 

3.1.91.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5233
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCos[c*x])^n, ( 
f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d + 
 e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 5763
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_) 
^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcCos[x/c])^n/x^( 
m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] 
&& IntegerQ[m] && IntegerQ[p]
 
3.1.91.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 34.29 (sec) , antiderivative size = 374, normalized size of antiderivative = 0.68

method result size
parts \(\frac {a x}{e}-\frac {a d \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{e \sqrt {d e}}+\frac {b \,\operatorname {arcsec}\left (c x \right ) x}{e}+\frac {2 i b \arctan \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{c e}-\frac {i b c d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +4 \textit {\_R1}^{2} e +c^{2} d \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{8 e^{2}}+\frac {i b c d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{8 e^{2}}\) \(374\)
derivativedivides \(\frac {\frac {a \,c^{3} x}{e}-\frac {a \,c^{3} d \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{e \sqrt {d e}}+b \,c^{2} \left (\frac {\operatorname {arcsec}\left (c x \right ) c x}{e}+\frac {2 i \arctan \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e}+\frac {i c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{8 e^{2}}-\frac {i c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +4 \textit {\_R1}^{2} e +c^{2} d \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{8 e^{2}}\right )}{c^{3}}\) \(388\)
default \(\frac {\frac {a \,c^{3} x}{e}-\frac {a \,c^{3} d \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{e \sqrt {d e}}+b \,c^{2} \left (\frac {\operatorname {arcsec}\left (c x \right ) c x}{e}+\frac {2 i \arctan \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{e}+\frac {i c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{8 e^{2}}-\frac {i c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +4 \textit {\_R1}^{2} e +c^{2} d \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{8 e^{2}}\right )}{c^{3}}\) \(388\)

input
int(x^2*(a+b*arcsec(c*x))/(e*x^2+d),x,method=_RETURNVERBOSE)
 
output
a/e*x-a*d/e/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))+b*arcsec(c*x)/e*x+2*I*b/c/ 
e*arctan(1/c/x+I*(1-1/c^2/x^2)^(1/2))-1/8*I*b*c/e^2*d*sum((_R1^2*c^2*d+4*_ 
R1^2*e+c^2*d)/_R1/(_R1^2*c^2*d+c^2*d+2*e)*(I*arcsec(c*x)*ln((_R1-1/c/x-I*( 
1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)),_R1 
=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d))+1/8*I*b*c/e^2*d*sum((_R1^2*c 
^2*d+c^2*d+4*e)/_R1/(_R1^2*c^2*d+c^2*d+2*e)*(I*arcsec(c*x)*ln((_R1-1/c/x-I 
*(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)),_ 
R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d))
 
3.1.91.5 Fricas [F]

\[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx=\int { \frac {{\left (b \operatorname {arcsec}\left (c x\right ) + a\right )} x^{2}}{e x^{2} + d} \,d x } \]

input
integrate(x^2*(a+b*arcsec(c*x))/(e*x^2+d),x, algorithm="fricas")
 
output
integral((b*x^2*arcsec(c*x) + a*x^2)/(e*x^2 + d), x)
 
3.1.91.6 Sympy [F]

\[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx=\int \frac {x^{2} \left (a + b \operatorname {asec}{\left (c x \right )}\right )}{d + e x^{2}}\, dx \]

input
integrate(x**2*(a+b*asec(c*x))/(e*x**2+d),x)
 
output
Integral(x**2*(a + b*asec(c*x))/(d + e*x**2), x)
 
3.1.91.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^2*(a+b*arcsec(c*x))/(e*x^2+d),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.1.91.8 Giac [F(-2)]

Exception generated. \[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate(x^2*(a+b*arcsec(c*x))/(e*x^2+d),x, algorithm="giac")
 
output
Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
 
3.1.91.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{d+e x^2} \, dx=\int \frac {x^2\,\left (a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )\right )}{e\,x^2+d} \,d x \]

input
int((x^2*(a + b*acos(1/(c*x))))/(d + e*x^2),x)
 
output
int((x^2*(a + b*acos(1/(c*x))))/(d + e*x^2), x)